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Abstract
We give a new, elementary proof of a key inequality used by Rudelson in the
derivation of his well-known bound for random sums of rank-one operators. Our
approach is based on Ahlswede and Winter’s technique for proving operator Chernoff
bounds. We also prove a concentration inequality for sums of random matrices of
rank one with explicit constants.

1 Introduction

This note mainly deals with estimates for the operator norm ||Z,|| of random sums

n

Zn=) €A (1)

i=1
of deterministic Hermitian matrices Ay, ..., A, multiplied by random coefficients. Recall
that a Rademacher sequence is a sequence {eZ ' , ofi.i.d. random variables with €; uniform
over {—1,+1}. A standard Gaussian sequence is a sequence ii.d. standard Gaussian
random variables. Our main goal is to prove the following result.

Theorem 1 (proven in Section [B)) Given positive integers d,n € N, let Ay,..., A, be
deterministic d x d Hermitian matrices and {€;}?_, be either a Rademacher sequence or a
standard Gaussian sequence. Define Z, as in (1). Then for all p € [1,+00),

E[|Z.|7"" < (v2In(2d) + C,) [|> A2
=1

1/2
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where

400 2 1/p
C,= (p/ Ple— 5 dt) (< ey/p for some universal ¢ > 0).
0

For d = 1, this result corresponds to the classical Khintchine inequalities, which give
sub-Guassian bounds for the moments of Y | €;a; (a1, ..., a, € R). Theorem [lis implicit
in Section 3 of Rudelson’s paper [11], albeit with non-explicit constants. The main Theorem
in that paper is the following inequality, which is a simple corollary of Theorem [I} if
Yy,...,Y, are ii.d. random (column) vectors in C? which are isotropic (i.e E[Y;Y] = I,
the d x d identity matrix), then:

1 & .
5;3@% —1I

for some universal C' > 0, whenever the RHS of the above inequality is at most 1. This
important result has been applied to several different problems, such as bringing a convex
body to near-isotropic position [I1]; the analysis of for low-rank approximations of matrices
[12, 6] and graph sparsification [13]; estimating of singular values of matrices with inde-
pendent rows [10]; analysing compressive sensing [3]; and related problems in Harmonic
Analysis [16], [15].

The key ingredient of the original proof of Theorem [I]is a non-commutative Khintchine
inequality by Lust-Picard and Pisier [9]. This states that there exists a universal ¢ > 0
such that for all Z,, as in the Theorem, all p > 1 and all d x d matrices {B;, D;}"_; with
Bi+D;=A4;,1<i<n,

ogn ]. d
E ] < CE [[y[loen] '/ oem [ 252 2)

n

1/2

+
Sp

1/2
E (| Za|%]"" < cv/p

Y

i B;B; i D:D;
=1 =1

where || - ||s» denotes the p-th Schatten norm: ||A|%, = Tr[(A*A)P/?]. Unfortunately, the
proof of the Lust-Picard /Pisier inequality employs language and tools from non-commutative
probability that are rather foreign to most potential users of (2I).

This note presents an elementary proof of Theorem [I] that bypasses the above inequal-
ity. Our argument is based on an improvement of the methodology created by Ahlswede
and Winter [2] in order to prove their operator Chernoff bound, which also has many appli-
cations e.g. [7] (the improvement is discussed in Section B.I]). This approach only requires
elementary facts from Linear Algebra and Matrix Analysis. The most complicated result
that we use is the Golden-Thompspon inequality [5] [14]:

Sp

Vd € N, V d x d Hermitian matrices A, B, Tr(e?T?) < Tr(e?eP). (3)
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The elementary proof of this classical inequality is sketched in Section [Bl below.

We have already noted that Rudelson’s bound (2]) follows simply from Theorem [II; see
[T, Section 3] for detais. Here we prove a concentration lemma corresponding to that
result under the stronger assumption that |Y;| is a.s. bounded. While similar results have
appeared in other papers [10], 12} [16], our proof is simpler and gives explicit (albeit quite
large) constants.

Lemma 1 (Proven in Section ) Let Y;,...,Y, be i.i.d. random column vectors in C?
with |Y1| < M almost surely and ||E[Y1Y{*] || < 1. Then:

7Lt2

1< _
- E Y —EYY(]|| > t) < (2n)2e T6M2Z+8M2t
n

i=1

VtEO,IP’<

In particular, a calculation shows that:

21 481n2 1
<en,M)=M \/7 nn + 481 with probability >1— —
n n

1 n
=) VY —EMYY]
n

1=1

whenever €(n, M) < 1. A key feature both of this Lemma is that the ambient dimension d
plays no direct role in the bound. In fact, the same result holds for Y; taking values in a
separable Hilbert space (as in the last section of [10]).

To conclude the introduction, we present an open problem: is it possible to improve
upon Rudelson’s bound under further assumptions? There is some evidence that the depen-
dence on In(d) in the Theorem, while necessary in general [12, Remark 3.4], can sometimes
be removed. For instance, Adamczak et al. [I] have improved upon Rudelson’s original
application of Theorem [I] to convex bodies, obtaining exactly what one would expect in

the absence of the y/log(2d) term. Another setting where our bound is a © <\/ In d) factor

away from optimality is that of more classical random matrices (cf. the end of Section B.1]
below). It would be interesting if one could sharpen the proof of Theorem [ in order to
reobtain these results. [Related issues are raised by Vershynin [17].]

2 Preliminaries

We let C&<? denote the set of d x d Hermitian matrices, which is a subset of the set C%*?
of all d x d matrices with complex entries. The spectral theorem states that all A € C&<%
have d real eigenvalues (possibly with repetitions) that correspond to an orthonormal set

of eigenvectors. Apax(A) is the largest eigenvalue of A. The spectrum of A, denoted by
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spec(A), is the multiset of all eigenvalues, where each eigenvalue appears a number of times
equal to its multiplicity. We let

IC|Il= max |Cv

veCd Jv|=1
denote the operator norm of C' € C#¢ (].| is the Euclidean norm). By the spectral theorem,

VA € C&4 I A]l = max{ Amax(A), Amax(—A)}.

Herm?

Moreover, Tr(A) (the trace of A) is the sum of the eigenvalues of A.

2.1 Spectral mapping

Let f : C — C be an entire analytic function with a power-series representation f(z) =
Y ns0Cn 2" (2 € C). If all ¢, are real, the expression:

FA) =) A (Ae Cf)

n>0

corresponds to a map from C%Xe]flm to itself. We will sometimes use the so-called spectral
mapping property:

spec f(A) = f(spec(A)). (4)
By this we mean that the eigenvalues of f(A) are the numbers f(\) with A € spec(A).
Moreover, the multiplicity of £ € specf(A) is the sum of the multiplicities of all preimages
of £ under f that lie in spec(A).

2.2 The positive-semidefinite order

We will use the notation A > 0 to say that A is positive-semidefinite, i.e. A € C%Xe]flm and

its eigenvalues are A are non-negative. This is equivalent to saying that (v, Av) > 0 for all
v € C¢, where (-, ) is the standard Euclidean inner product.
If A,B e C%%  we write A= B or B < A to say that A — B > 0. Notice that “>” is

a partial order Igmerrlrg’that:
VA, B,A B e C&d (A< A)AN(B=B)=A+A<B+DB. (5)
Moreover, spectral mapping () implies that:
VA € Cid A% = 0. (6)

We will also need the following simple fact.



Proposition 1 For all A,B,C € C&4 .

(C' = 0) A (A < B) = Tr(AC) < Te(BO). (7)

Proof: To prove this, assume the LHS and observe that the RHS is equivalent to Tr(C'A) >
0 where A = B — A. By assumption, A > 0, hence it has a Hermitian square root A2,
The cyclic property of the trace implies:

Tr(CA) = Tr(AY2CAY?).

Since the trace is the sum of the eigenvalues, we will be done once we show that AY2CAY? >
0. But, since A2 is Hermitian and C' > 0,

Vo € C4, (v, AY2CAY?) = (AY?0), C(AY?0)) = (w, Cw) > 0 (with w = A/?p),

which shows that AY2CAY? = 0, as desired. O

2.3 Probability with matrices

Assume (2, F,P) is a probability space and Z : Q — C%*¢ is measurable with respect

Herm

to F and the Borel o-field on C#¢ (this is equivalent to requiring that all entries of Z

Herm

be complex-valued random variables). C%Xe]flm is a metrically complete vector space and

one can naturally define an expected value E[Z] € C{X% . This turns out to be the matrix

E[Z] € C&4 whose (i, j)-entry is the expected value of the (4, j)-th entry of Z. [Of course,

Herm

E[Z] is only defined if all entries of Z are integrable, but this will always be the case in
this paper.|
The definition of expectations implies that traces and expectations commute:

Tv(E [2)) = E[Tx(Z)] . (8)
Moreover, one can check that the usual product rule is satisfied:

If Z,W:Q— C&2 are measurable and independent, E[ZW] =E[Z]E[W]. (9)

Herm

3 Proof of Theorem [l

Proof: [of Theorem [I] We wish to control the tail behavior of:

| Zn || = max{Amax(Zn), Amax(—Zn) }

bt



However, Z,, and —Z,, have the same distribution. It follows that:
Vit >0, P(|Za]| > t) < 2P (Amax(Zn) > 1) .
The usual Bernstein trick implies that for all ¢ > 0,

Yt > 0’ P ()\max(Zn) > t) < inf 6—stE [es)\max(Zn)} )

s>0

The function “z — e**” is monotone non-decreasing and positive for all s > 0. It follows
from the spectral mapping property () that for all s > 0, the largest eigenvalue of e5%» is
e max(Zn) and all eigenvalues of e*4" are non-negative. Using the equality “trace = sum of
eigenvalues” implies that for all s > 0,

E [e?mex@)] = E [Apax (€27")] < E [Tr (e%7)] .
As a result, we have the inequality:

VE>0,P([|Za) > ¢t) < Qigge_StE [Tr (e%77)] . (10)

Up to now, our proof has followed Ahlswede and Winter’s argument. The next lemma,
however, will require new ideas.

Lemma 2 For all s € R,
3252?: A%
E [Tr(esz”)] <'Tr (6 > ) .

This lemma is proven below. We will now show how it implies Rudelson’s bound. Let

> A7 = Aax (Z A?) .
i=1 i=1
[The second inequality follows from Y | A? > 0, which holds because of (&) and (@).] We

note that:
250 A7 230 A7 5202
Tr{e™ 2 < dMpax | €7 2 =de 2

where the equality is yet another application of spectral mapping (@) and the fact that
“r 1 e*°%/2” is monotone increasing. We deduce from the Lemma and (I0) that:

O'2E

+2

52t2
V=0, P(|Z,]] 2 ) < 2d inf e = 2d e, (11)
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This implies that for any p > 1,
1 oo
ZE (12, - vV2d)o);| = / P (11 Z,)| > (V21(2d) + )0 di
o 0
+oo t n 2
(re@) < 2pd [t EE
0

+o<) 2 n
< 2pd/ o= g = o
0

p

Since 0 < || Z,.]] < /2In(2d)o + (|| Z,|| — /21n(2d)o) -, this implies the L estimate in the
Theorem. The bound “C), < cy/p” is standard and we omit its proof. O

To finish, we now prove Lemma
Proof: [of Lemma [2] Define Dy = > | s*A?/2 and

/ s2A?
D; ED0+Z <5€iAi_TZ) (1<j<n).
i=1

We will prove that for all 1 < j < n:
E[Tr (exp (D;))] < E[Tr (exp (D;-1))] . (12)

Notice that this implies E [Tr(e”")] < E [Tr( 9)], which is the precisely the Lemma. To
prove (I2), fix 1 < j < n. Notice that D;_, is independent from se;A; — s*A%/2 since the
{€;}~, are independent. This implies that

E[Tr(exp (D;))] = E [Tr (eXp (DJ 186 = E))

(use Golden-Thompson @) < E {Tr (exp (Dj-1) exp (“JA B 2A2))}
(Tr(-) and E[] commute, &) = T (E {GXP (D) exp ( A)D
(use product rule, @) = Tr (E [exp (Dj-1)] E [eXp (SEJA - SQA?)D ’

By the monotonicity of the trace () and the fact that exp (D;_1) = 0 (which follows
from (@), we will be done once we show that:

E lexp (sea — 95\] <1 1
p | seA; 5 <1. (13)
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The key fact is that se;A; and —82A§ /2 always commute, hence the exponential of the sum

—SQA?/2

is the product of the exponentials. Applying (@) and noting that e is constant, we

see that: ) 1o
S Aj s242

2o (s, - “2)] - Bl st 2.

2 42
e’ A%/2

In the Gaussian case, an explicit calculation shows that E [exp (s€;A;)] = , hence

(I3) holds. In the Rademacher case, we have:

s2A2

E[exp (se;Aj) e = f(4;)

where f(z) = cosh(sz)e™*"*"/2. Tt is a classical fact that 0 < cosh(z)
(just compare the Taylor expansions); this implies that 0 < f(\) < 1
A;. Using spectral mapping (), we see that:

specf(A;) = f(spec(4;)) C [0,1],

which implies that f(A;) < I. This proves (I3)) in this case and finishes the proof of (I2))
and of the Lemma. 0O

< e®/2 for all 7 € R
for all eigenvalues of

3.1 Remarks on the original AW approach

A direct adaptation of the original argument of Ahlswede and Winter [2] would lead to an
inequality of the form:

E [Tr(e*”")] < Tr (E [e***"] E [e*#1]) .

One sees that:
5242 s21A2)
2

E [eSE”A”] <e 2z <e

However, only the second inequality seems to be useful, as there is no obvious relationship

between
SZA%
Tr (e 2 |E [652”1])

Tr <E I:esenflAn—l} E |:€sZn2+%:|) ’

and



which is what we would need to proceed with induction. [Note that Golden-Thompson (3]
cannot be undone and fails for three summands, [14].] The best one can do with the second
inequality is:
2P 14012

E [Tr(e*”")] < de 2
This would give a version of Theorem M with Y 7" | ||A;]|? replacing || >_7, A?||. This mod-
ified result is always worse than the actual Theorem, and can be dramatically so. For
instance, consider the case of a Wigner matriz where:

Zn = E Eiinj
1<i<j<m

with the ¢;; i.i.d. standard Gaussian and each A;; has ones at positions (4, j) and (j,4) and
zeros elsewhere (we take d = m and n = (g”) in this case). Direct calculation reveals:

m
S| =m0 =m -1 () = 3
ij ij

We note in passing that neither approach is sharp in this case, as || ), i €ijAij || concen-
trates around 2v/m [4].

4 Concentration for rank-one operators
In this section we prove Lemma [Il

Proof: [of Lemma [I] Let
exp (s )

Vs >0, ¢(s) < 2n M5 /m¢(2M3s2 /n). (14)

o(s) =E

1 n
=N VY - EWY]
n

i=1

We will show below that:

By Jensen’s inequality, ¢(2Ms2/n) < ¢(s)?*5/" whenever 2M?s/n < 1, hence (I4) implies:

2M2 52

1
VO S S S n/2M2’ ¢($) S (2n) 172]\125/nen—2M28.

Since

VsZO,IP’(

1 n
= VY —EWY]
n

i=1

2 t) < e "o(s),
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the Lemma then follows from the choice
tn

8M?2 + 4M?2t
and a few simple calculations. [Notice that 2M?s/n < 1/2 with this choice, hence 1/(1 —
2M?s/n) < 2.]

To prove (I4]), we begin with symmetrization (see e.g. [§]):

S =

n

1
<E|e 2s ||— Z}Qy*
s el o1 5]
where {¢;}7_, is a Rademacher sequence independent of Y7,...,Y,. Let S be the (random)
span of Y7,...,Y, and Trs denote the trace operation on linear operators mapping S to

itself. Following the argument in Theorem [Il we notice that:

2 n
exp<2s )\Yi,...,Yn Trg{exp(;szeiyiyi*)}|Y’1,,..,Yn
i=1

Lemma [2] implies:
2 n
exp(Qs >|Y1,...,Yn < 2Tr3{exp(—22 )}
2 n
< 2nexp —2 Z Y;Y;)?
=1

using spectral mapping (), the equality “trace = sum of eigenvalues and the fact that S
has dimension < n. A quick calculation shows that 0 < (Y;Y;*)? = |Y;*Y;Y* < M?Y;Y*,

hence () implies:
25° ¢ ©2 < 2M?s° - x
0= ey Z(YZYZ )T = ZYY

=1

n

Sy ey

i=1

E <2E

n

LSy

i=1

E

Therefore:

282 £\2 *
WZ(YiYi ) ZYY

[We used [|[E[Y1Y]"]]] <1 in the last inequality.] Pluggmg thls into the conditional expec-
tation above and integrating, we obtain ([I4)):

2 M2 2
exp

2M22 2M22

2M?s?

ZYY* E[YY]]|| +

2M?s?

ZYY* E [Y1Y'] -

o(s) <2nE

)] = 2™/ o (2M2 5% /n).

O
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5 Proof sketch for (Golden-Thompson inequality

As promised in the Introduction, we sketch an elementary proof of inequality ([B]). We will
need the Trotter-Lie formula, a simple consequence of the Taylor formula for eX:

VA, B € CfXd | lirJIrl (eA/neBinyn — ATB, (15)
n—-+0o0

The second ingredient is the inequality:

VEeNVXY e C¥L - XY = 0= Tr((XY)?) < Tr((X2Y?)?). (16)

Herm

This is proven in of [5] via an argument using the existence of positive-semidefinite square-
roots for positive-semidefinite matrices, and the Cauchy-Schwartz inequality for the stan-
dard inner product over C4?. Tterating (IG) implies:

VXY € CEL XYV = 0= Te((XY)?) < Tr(x?v?),

Herm

Apply this to X = e/?" and Y = eP/?" with A, B € C&¢  Spectral mapping (@) implies
X,Y > 0 and we deduce: . o
Tr((e?/? eB/2)2) < Tr(e?e?).

Inequality (B)) follows from letting k — +o0, using (I3]) and noticing that Tr(-) is continuous.
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