Sums of random Hermitian matrices and an inequality by Rudelson

Roberto Imbuzeiro Oliveira*

April 23, 2010

Abstract

We give a new, elementary proof of a key inequality used by Rudelson in the derivation of his well-known bound for random sums of rank-one operators. Our approach is based on Ahlswede and Winter's technique for proving operator Chernoff bounds. We also prove a concentration inequality for sums of random matrices of rank one with explicit constants.

1 Introduction

This note mainly deals with estimates for the operator norm $\left\|Z_{n}\right\|$ of random sums

$$
\begin{equation*}
Z_{n} \equiv \sum_{i=1}^{n} \epsilon_{i} A_{i} \tag{1}
\end{equation*}
$$

of deterministic Hermitian matrices A_{1}, \ldots, A_{n} multiplied by random coefficients. Recall that a Rademacher sequence is a sequence $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ of i.i.d. random variables with ϵ_{1} uniform over $\{-1,+1\}$. A standard Gaussian sequence is a sequence i.i.d. standard Gaussian random variables. Our main goal is to prove the following result.

Theorem 1 (proven in Section (3) Given positive integers $d, n \in \mathbb{N}$, let A_{1}, \ldots, A_{n} be deterministic $d \times d$ Hermitian matrices and $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ be either a Rademacher sequence or a standard Gaussian sequence. Define Z_{n} as in (1). Then for all $p \in[1,+\infty)$,

$$
\mathbb{E}\left[\left\|Z_{n}\right\|^{p}\right]^{1 / p} \leq\left(\sqrt{2 \ln (2 d)}+C_{p}\right)\left\|\sum_{i=1}^{n} A_{i}^{2}\right\|^{1 / 2}
$$

[^0]where
$$
C_{p} \equiv\left(p \int_{0}^{+\infty} t^{p-1} e^{-\frac{t^{2}}{2}} d t\right)^{1 / p}(\leq c \sqrt{p} \text { for some universal } c>0)
$$

For $d=1$, this result corresponds to the classical Khintchine inequalities, which give sub-Guassian bounds for the moments of $\sum_{i=1}^{n} \epsilon_{i} a_{i}\left(a_{1}, \ldots, a_{n} \in \mathbb{R}\right)$. Theorem 1 is implicit in Section 3 of Rudelson's paper [11, albeit with non-explicit constants. The main Theorem in that paper is the following inequality, which is a simple corollary of Theorem 1; if Y_{1}, \ldots, Y_{n} are i.i.d. random (column) vectors in \mathbb{C}^{d} which are isotropic (i.e $\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]=I$, the $d \times d$ identity matrix), then:

$$
\begin{equation*}
\mathbb{E}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-I\right\|\right] \leq C \mathbb{E}\left[\left|Y_{1}\right|^{\log n}\right]^{1 / \log n} \sqrt{\frac{\log d}{n}} \tag{2}
\end{equation*}
$$

for some universal $C>0$, whenever the RHS of the above inequality is at most 1 . This important result has been applied to several different problems, such as bringing a convex body to near-isotropic position [11]; the analysis of for low-rank approximations of matrices [12, 6] and graph sparsification [13]; estimating of singular values of matrices with independent rows [10]; analysing compressive sensing [3]; and related problems in Harmonic Analysis [16, 15].

The key ingredient of the original proof of Theorem 1 is a non-commutative Khintchine inequality by Lust-Picard and Pisier [9]. This states that there exists a universal $c>0$ such that for all Z_{n} as in the Theorem, all $p \geq 1$ and all $d \times d$ matrices $\left\{B_{i}, D_{i}\right\}_{i=1}^{n}$ with $B_{i}+D_{i}=A_{i}, 1 \leq i \leq n$,

$$
\mathbb{E}\left[\left\|Z_{n}\right\|_{S^{p}}^{p}\right]^{1 / p} \leq c \sqrt{p}\left(\left\|\sum_{i=1}^{n} B_{i} B_{i}^{*}\right\|_{S^{p}}^{1 / 2}+\left\|\sum_{i=1}^{n} D_{i}^{*} D_{i}\right\|_{S^{p}}^{1 / 2}\right)
$$

where $\|\cdot\|_{S^{p}}$ denotes the p-th Schatten norm: $\|A\|_{S^{p}}^{p} \equiv \operatorname{Tr}\left[\left(A^{*} A\right)^{p / 2}\right]$. Unfortunately, the proof of the Lust-Picard/Pisier inequality employs language and tools from non-commutative probability that are rather foreign to most potential users of (2).

This note presents an elementary proof of Theorem 1 that bypasses the above inequality. Our argument is based on an improvement of the methodology created by Ahlswede and Winter [2] in order to prove their operator Chernoff bound, which also has many applications e.g. [7] (the improvement is discussed in Section 3.1). This approach only requires elementary facts from Linear Algebra and Matrix Analysis. The most complicated result that we use is the Golden-Thompspon inequality [5, 14]:

$$
\begin{equation*}
\forall d \in \mathbb{N}, \forall d \times d \text { Hermitian matrices } A, B, \operatorname{Tr}\left(e^{A+B}\right) \leq \operatorname{Tr}\left(e^{A} e^{B}\right) \tag{3}
\end{equation*}
$$

The elementary proof of this classical inequality is sketched in Section 5 below.
We have already noted that Rudelson's bound (2) follows simply from Theorem [1; see [11. Section 3] for detais. Here we prove a concentration lemma corresponding to that result under the stronger assumption that $\left|Y_{1}\right|$ is a.s. bounded. While similar results have appeared in other papers [10, 12, 16], our proof is simpler and gives explicit (albeit quite large) constants.

Lemma 1 (Proven in Section (4) Let Y_{1}, \ldots, Y_{n} be i.i.d. random column vectors in \mathbb{C}^{d} with $\left|Y_{1}\right| \leq M$ almost surely and $\left\|\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\| \leq 1$. Then:

$$
\forall t \geq 0, \mathbb{P}\left(\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\| \geq t\right) \leq(2 n)^{2} e^{-\frac{n 2^{2}}{16 M^{2}+8 M^{2} t}}
$$

In particular, a calculation shows that:

$$
\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\|<\epsilon(n, M) \equiv M \sqrt{\frac{72 \ln n+48 \ln 2}{n}} \text { with probability } \geq 1-\frac{1}{n}
$$

whenever $\epsilon(n, M) \leq 1$. A key feature both of this Lemma is that the ambient dimension d plays no direct role in the bound. In fact, the same result holds for Y_{i} taking values in a separable Hilbert space (as in the last section of [10]).

To conclude the introduction, we present an open problem: is it possible to improve upon Rudelson's bound under further assumptions? There is some evidence that the dependence on $\ln (d)$ in the Theorem, while necessary in general [12, Remark 3.4], can sometimes be removed. For instance, Adamczak et al. [1] have improved upon Rudelson's original application of Theorem 1 to convex bodies, obtaining exactly what one would expect in the absence of the $\sqrt{\log (2 d)}$ term. Another setting where our bound is a $\Theta(\sqrt{\ln d})$ factor away from optimality is that of more classical random matrices (cf. the end of Section 3.1 below). It would be interesting if one could sharpen the proof of Theorem 1 in order to reobtain these results. [Related issues are raised by Vershynin [17].]

2 Preliminaries

We let $\mathbb{C}_{\text {Herm }}^{d \times d}$ denote the set of $d \times d$ Hermitian matrices, which is a subset of the set $\mathbb{C}^{d \times d}$ of all $d \times d$ matrices with complex entries. The spectral theorem states that all $A \in \mathbb{C}_{\text {Herm }}^{d \times d}$ have d real eigenvalues (possibly with repetitions) that correspond to an orthonormal set of eigenvectors. $\lambda_{\max }(A)$ is the largest eigenvalue of A. The spectrum of A, denoted by
$\operatorname{spec}(A)$, is the multiset of all eigenvalues, where each eigenvalue appears a number of times equal to its multiplicity. We let

$$
\|C\| \equiv \max _{v \in \mathbb{C}^{d}|v|=1}|C v|
$$

denote the operator norm of $C \in \mathbb{C}^{d \times d}(|\cdot|$ is the Euclidean norm). By the spectral theorem,

$$
\forall A \in \mathbb{C}_{\text {Herm }}^{d \times d},\|A\|=\max \left\{\lambda_{\max }(A), \lambda_{\max }(-A)\right\} .
$$

Moreover, $\operatorname{Tr}(A)$ (the trace of A) is the sum of the eigenvalues of A.

2.1 Spectral mapping

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire analytic function with a power-series representation $f(z) \equiv$ $\sum_{n \geq 0} c_{n} z^{n}(z \in \mathbb{C})$. If all c_{n} are real, the expression:

$$
f(A) \equiv \sum_{n \geq 0} c_{n} A^{n} \quad\left(A \in \mathbb{C}_{\text {Herm }}^{d \times d}\right)
$$

corresponds to a map from $\mathbb{C}_{\text {Herm }}^{d \times d}$ to itself. We will sometimes use the so-called spectral mapping property:

$$
\begin{equation*}
\operatorname{spec} f(A)=f(\operatorname{spec}(A)) \tag{4}
\end{equation*}
$$

By this we mean that the eigenvalues of $f(A)$ are the numbers $f(\lambda)$ with $\lambda \in \operatorname{spec}(A)$. Moreover, the multiplicity of $\xi \in \operatorname{spec} f(A)$ is the sum of the multiplicities of all preimages of ξ under f that lie in $\operatorname{spec}(A)$.

2.2 The positive-semidefinite order

We will use the notation $A \succeq 0$ to say that A is positive-semidefinite, i.e. $A \in \mathbb{C}_{\mathrm{Herm}}^{d \times d}$ and its eigenvalues are A are non-negative. This is equivalent to saying that $(v, A v) \geq 0$ for all $v \in \mathbb{C}^{d}$, where $(\cdot, \cdot \cdot)$ is the standard Euclidean inner product.

If $A, B \in \mathbb{C}_{\text {Herm }}^{d \times d}$, we write $A \succeq B$ or $B \preceq A$ to say that $A-B \succeq 0$. Notice that " \succeq " is a partial order and that:

$$
\begin{equation*}
\forall A, B, A^{\prime}, B^{\prime} \in \mathbb{C}_{\text {Herm }}^{d \times d},\left(A \preceq A^{\prime}\right) \wedge\left(B \preceq B^{\prime}\right) \Rightarrow A+A^{\prime} \preceq B+B^{\prime} \tag{5}
\end{equation*}
$$

Moreover, spectral mapping (4) implies that:

$$
\begin{equation*}
\forall A \in \mathbb{C}_{\text {Herm }}^{d \times d}, A^{2} \succeq 0 . \tag{6}
\end{equation*}
$$

We will also need the following simple fact.

Proposition 1 For all $A, B, C \in \mathbb{C}_{\text {Herm }}^{d \times d}$:

$$
\begin{equation*}
(C \succeq 0) \wedge(A \preceq B) \Rightarrow \operatorname{Tr}(A C) \leq \operatorname{Tr}(B C) \tag{7}
\end{equation*}
$$

Proof: To prove this, assume the LHS and observe that the RHS is equivalent to $\operatorname{Tr}(C \Delta) \geq$ 0 where $\Delta \equiv B-A$. By assumption, $\Delta \succeq 0$, hence it has a Hermitian square root $\Delta^{1 / 2}$. The cyclic property of the trace implies:

$$
\operatorname{Tr}(C \Delta)=\operatorname{Tr}\left(\Delta^{1 / 2} C \Delta^{1 / 2}\right)
$$

Since the trace is the sum of the eigenvalues, we will be done once we show that $\Delta^{1 / 2} C \Delta^{1 / 2} \succeq$ 0 . But, since $\Delta^{1 / 2}$ is Hermitian and $C \succeq 0$,

$$
\forall v \in \mathbb{C}^{d},\left(v, \Delta^{1 / 2} C \Delta^{1 / 2} v\right)=\left(\left(\Delta^{1 / 2} v\right), C\left(\Delta^{1 / 2} v\right)\right)=(w, C w) \geq 0\left(\text { with } w=\Delta^{1 / 2} v\right)
$$

which shows that $\Delta^{1 / 2} C \Delta^{1 / 2} \succeq 0$, as desired.

2.3 Probability with matrices

Assume $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $Z: \Omega \rightarrow \mathbb{C}_{\text {Herm }}^{d \times d}$ is measurable with respect to \mathcal{F} and the Borel σ-field on $\mathbb{C}_{\text {Herm }}^{d \times d}$ (this is equivalent to requiring that all entries of Z be complex-valued random variables). $\mathbb{C}_{\text {Herm }}^{d \times d}$ is a metrically complete vector space and one can naturally define an expected value $\mathbb{E}[Z] \in \mathbb{C}_{\text {Herm }}^{d \times d}$. This turns out to be the matrix $\mathbb{E}[Z] \in \mathbb{C}_{\text {Herm }}^{d \times d}$ whose (i, j)-entry is the expected value of the (i, j)-th entry of Z. [Of course, $\mathbb{E}[Z]$ is only defined if all entries of Z are integrable, but this will always be the case in this paper.]

The definition of expectations implies that traces and expectations commute:

$$
\begin{equation*}
\operatorname{Tr}(\mathbb{E}[Z])=\mathbb{E}[\operatorname{Tr}(Z)] \tag{8}
\end{equation*}
$$

Moreover, one can check that the usual product rule is satisfied:

$$
\begin{equation*}
\text { If } Z, W: \Omega \rightarrow \mathbb{C}_{\text {Herm }}^{d \times d} \text { are measurable and independent, } \mathbb{E}[Z W]=\mathbb{E}[Z] \mathbb{E}[W] \text {. } \tag{9}
\end{equation*}
$$

3 Proof of Theorem 1

Proof: [of Theorem [1] We wish to control the tail behavior of:

$$
\left\|Z_{n}\right\|=\max \left\{\lambda_{\max }\left(Z_{n}\right), \lambda_{\max }\left(-Z_{n}\right)\right\} .
$$

However, Z_{n} and $-Z_{n}$ have the same distribution. It follows that:

$$
\forall t \geq 0, \mathbb{P}\left(\left\|Z_{n}\right\| \geq t\right) \leq 2 \mathbb{P}\left(\lambda_{\max }\left(Z_{n}\right) \geq t\right)
$$

The usual Bernstein trick implies that for all $t \geq 0$,

$$
\forall t \geq 0, \mathbb{P}\left(\lambda_{\max }\left(Z_{n}\right) \geq t\right) \leq \inf _{s>0} e^{-s t} \mathbb{E}\left[e^{s \lambda_{\max }\left(Z_{n}\right)}\right]
$$

The function " $x \mapsto e^{s x}$ " is monotone non-decreasing and positive for all $s \geq 0$. It follows from the spectral mapping property (4) that for all $s \geq 0$, the largest eigenvalue of $e^{s Z_{n}}$ is $e^{s \lambda_{\max }\left(Z_{n}\right)}$ and all eigenvalues of $e^{s Z_{n}}$ are non-negative. Using the equality "trace $=$ sum of eigenvalues" implies that for all $s \geq 0$,

$$
\mathbb{E}\left[e^{s \lambda_{\max }\left(Z_{n}\right)}\right]=\mathbb{E}\left[\lambda_{\max }\left(e^{s Z_{n}}\right)\right] \leq \mathbb{E}\left[\operatorname{Tr}\left(e^{s Z_{n}}\right)\right]
$$

As a result, we have the inequality:

$$
\begin{equation*}
\forall t \geq 0, \mathbb{P}\left(\left\|Z_{n}\right\| \geq t\right) \leq 2 \inf _{s \geq 0} e^{-s t} \mathbb{E}\left[\operatorname{Tr}\left(e^{s Z_{n}}\right)\right] \tag{10}
\end{equation*}
$$

Up to now, our proof has followed Ahlswede and Winter's argument. The next lemma, however, will require new ideas.

Lemma 2 For all $s \in \mathbb{R}$,

$$
\mathbb{E}\left[\operatorname{Tr}\left(e^{s Z_{n}}\right)\right] \leq \operatorname{Tr}\left(e^{\frac{s^{2} \sum_{i=1}^{n} A_{i}^{2}}{2}}\right)
$$

This lemma is proven below. We will now show how it implies Rudelson's bound. Let

$$
\sigma^{2} \equiv\left\|\sum_{i=1}^{n} A_{i}^{2}\right\|=\lambda_{\max }\left(\sum_{i=1}^{n} A_{i}^{2}\right)
$$

[The second inequality follows from $\sum_{i=1}^{n} A_{i}^{2} \succeq 0$, which holds because of (5) and (6).] We note that:

$$
\operatorname{Tr}\left(e^{\frac{s^{2} \sum_{i=1}^{n} A_{i}^{2}}{2}}\right) \leq d \lambda_{\max }\left(e^{\frac{s^{2} \sum_{i=1}^{n} A_{i}^{2}}{2}}\right)=d e^{\frac{s^{2} \sigma^{2}}{2}}
$$

where the equality is yet another application of spectral mapping (4) and the fact that " $x \mapsto e^{s^{2} x / 2 "}$ is monotone increasing. We deduce from the Lemma and (10) that:

$$
\begin{equation*}
\forall t \geq 0, \mathbb{P}\left(\left\|Z_{n}\right\| \geq t\right) \leq 2 d \inf _{s \geq 0} e^{-s t+\frac{s^{2} t^{2}}{2}}=2 d e^{-\frac{t^{2}}{2 \sigma^{2}}} \tag{11}
\end{equation*}
$$

This implies that for any $p \geq 1$,

$$
\begin{aligned}
\frac{1}{\sigma^{p}} \mathbb{E}\left[\left(\left\|Z_{n}\right\|-\sqrt{2 \ln (2 d)} \sigma\right)_{+}^{p}\right] & =p \int_{0}^{+\infty} t^{p-1} \mathbb{P}\left(\left\|Z_{n}\right\| \geq(\sqrt{2 \ln (2 d)}+t) \sigma\right) d t \\
\text { (use(11)) } & \leq 2 p d \int_{0}^{+\infty} t^{p-1} e^{-\frac{(t+\sqrt{2 \ln (2 d)})^{2}}{2}} d t \\
& \leq 2 p d \int_{0}^{+\infty} t^{p-1} e^{-\frac{t^{2}+2 \ln (2 d)}{2}} d t=C_{p}^{p}
\end{aligned}
$$

Since $0 \leq\left\|Z_{n}\right\| \leq \sqrt{2 \ln (2 d)} \sigma+\left(\left\|Z_{n}\right\|-\sqrt{2 \ln (2 d)} \sigma\right)_{+}$, this implies the L^{p} estimate in the Theorem. The bound " $C_{p} \leq c \sqrt{p}$ " is standard and we omit its proof.

To finish, we now prove Lemma 2.
Proof: [of Lemma 2] Define $D_{0} \equiv \sum_{i=1}^{n} s^{2} A_{i}^{2} / 2$ and

$$
D_{j} \equiv D_{0}+\sum_{i=1}^{j}\left(s \epsilon_{i} A_{i}-\frac{s^{2} A_{i}^{2}}{2}\right) \quad(1 \leq j \leq n)
$$

We will prove that for all $1 \leq j \leq n$:

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Tr}\left(\exp \left(D_{j}\right)\right)\right] \leq \mathbb{E}\left[\operatorname{Tr}\left(\exp \left(D_{j-1}\right)\right)\right] \tag{12}
\end{equation*}
$$

Notice that this implies $\mathbb{E}\left[\operatorname{Tr}\left(e^{D_{n}}\right)\right] \leq \mathbb{E}\left[\operatorname{Tr}\left(e^{D_{0}}\right)\right]$, which is the precisely the Lemma. To prove (12), fix $1 \leq j \leq n$. Notice that D_{j-1} is independent from $s \epsilon_{j} A_{j}-s^{2} A_{j}^{2} / 2$ since the $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ are independent. This implies that:

$$
\mathbb{E}\left[\operatorname{Tr}\left(\exp \left(D_{j}\right)\right)\right]=\mathbb{E}\left[\operatorname{Tr}\left(\exp \left(D_{j-1}+s \epsilon_{j} A_{j}-\frac{s^{2} A_{j}^{2}}{2}\right)\right)\right]
$$

(use Golden-Thompson (3)) $\leq \mathbb{E}\left[\operatorname{Tr}\left(\exp \left(D_{j-1}\right) \exp \left(s \epsilon_{j} A_{j}-\frac{s^{2} A_{j}^{2}}{2}\right)\right)\right]$
$(\operatorname{Tr}(\cdot)$ and $\mathbb{E}[\cdot]$ commute, (8) $)=\operatorname{Tr}\left(\mathbb{E}\left[\exp \left(D_{j-1}\right) \exp \left(s \epsilon_{j} A_{j}-\frac{s^{2} A_{j}^{2}}{2}\right)\right]\right)$.
(use product rule, (9)) $=\operatorname{Tr}\left(\mathbb{E}\left[\exp \left(D_{j-1}\right)\right] \mathbb{E}\left[\exp \left(s \epsilon_{j} A_{j}-\frac{s^{2} A_{j}^{2}}{2}\right)\right]\right)$.
By the monotonicity of the trace (7) and the fact that $\exp \left(D_{j-1}\right) \succeq 0$ (which follows from (4)), we will be done once we show that:

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(s \epsilon_{j} A_{j}-\frac{s^{2} A_{j}^{2}}{2}\right)\right] \preceq I . \tag{13}
\end{equation*}
$$

The key fact is that $s \epsilon_{j} A_{j}$ and $-s^{2} A_{j}^{2} / 2$ always commute, hence the exponential of the sum is the product of the exponentials. Applying (9) and noting that $e^{-s^{2} A_{j}^{2} / 2}$ is constant, we see that:

$$
\mathbb{E}\left[\exp \left(s \epsilon_{j} A_{j}-\frac{s^{2} A_{j}^{2}}{2}\right)\right]=\mathbb{E}\left[\exp \left(s \epsilon_{j} A_{j}\right)\right] e^{-\frac{s^{2} A_{j}^{2}}{2}}
$$

In the Gaussian case, an explicit calculation shows that $\mathbb{E}\left[\exp \left(s \epsilon_{j} A_{j}\right)\right]=e^{s^{2} A_{j}^{2} / 2}$, hence (13) holds. In the Rademacher case, we have:

$$
\mathbb{E}\left[\exp \left(s \epsilon_{j} A_{j}\right)\right] e^{-\frac{s^{2} A_{j}^{2}}{2}}=f\left(A_{j}\right)
$$

where $f(z)=\cosh (s z) e^{-s^{2} z^{2} / 2}$. It is a classical fact that $0 \leq \cosh (x) \leq e^{x^{2} / 2}$ for all $x \in \mathbb{R}$ (just compare the Taylor expansions); this implies that $0 \leq f(\lambda) \leq 1$ for all eigenvalues of A_{j}. Using spectral mapping (4), we see that:

$$
\operatorname{spec} f\left(A_{j}\right)=f\left(\operatorname{spec}\left(A_{j}\right)\right) \subset[0,1]
$$

which implies that $f\left(A_{j}\right) \preceq I$. This proves (13) in this case and finishes the proof of (12) and of the Lemma.

3.1 Remarks on the original AW approach

A direct adaptation of the original argument of Ahlswede and Winter [2] would lead to an inequality of the form:

$$
\mathbb{E}\left[\operatorname{Tr}\left(e^{s Z_{n}}\right)\right] \leq \operatorname{Tr}\left(\mathbb{E}\left[e^{s \epsilon_{n} A_{n}}\right] \mathbb{E}\left[e^{s Z_{n-1}}\right]\right)
$$

One sees that:

$$
\mathbb{E}\left[e^{s \epsilon_{n} A_{n}}\right] \preceq e^{\frac{s^{2} A_{n}^{2}}{2}} \preceq e^{\frac{s^{2}\left\|A_{n}^{2}\right\|}{2}} I .
$$

However, only the second inequality seems to be useful, as there is no obvious relationship between

$$
\operatorname{Tr}\left(e^{\frac{s^{2} A_{n}^{2}}{2}} \mathbb{E}\left[e^{s Z_{n-1}}\right]\right)
$$

and

$$
\operatorname{Tr}\left(\mathbb{E}\left[e^{s \epsilon_{n-1} A_{n-1}}\right] \mathbb{E}\left[e^{s Z_{n-2}+\frac{s^{2} A_{n}^{2}}{2}}\right]\right)
$$

which is what we would need to proceed with induction. [Note that Golden-Thompson (3) cannot be undone and fails for three summands, [14.] The best one can do with the second inequality is:

$$
\mathbb{E}\left[\operatorname{Tr}\left(e^{s Z_{n}}\right)\right] \leq d e^{\frac{s^{2} \sum_{i=1}^{n}\left\|A_{i}\right\|^{2}}{2}}
$$

This would give a version of Theorem 11 with $\sum_{i=1}^{n}\left\|A_{i}\right\|^{2}$ replacing $\left\|\sum_{i=1}^{n} A_{i}^{2}\right\|$. This modified result is always worse than the actual Theorem, and can be dramatically so. For instance, consider the case of a Wigner matrix where:

$$
Z_{n} \equiv \sum_{1 \leq i \leq j \leq m} \epsilon_{i j} A_{i j}
$$

with the $\epsilon_{i j}$ i.i.d. standard Gaussian and each $A_{i j}$ has ones at positions (i, j) and (j, i) and zeros elsewhere (we take $d=m$ and $n=\binom{m}{2}$ in this case). Direct calculation reveals:

$$
\left\|\sum_{i j} A_{i j}^{2}\right\|=\|(m-1) I\|=m-1 \ll\binom{m}{2}=\sum_{i j}\left\|A_{i j}\right\|^{2} .
$$

We note in passing that neither approach is sharp in this case, as $\left\|\sum_{i j} \epsilon_{i j} A_{i j}\right\|$ concentrates around $2 \sqrt{m}$ (4).

4 Concentration for rank-one operators

In this section we prove Lemma 1
Proof: [of Lemma 1] Let

$$
\phi(s) \equiv \mathbb{E}\left[\exp \left(s\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\|\right)\right]
$$

We will show below that:

$$
\begin{equation*}
\forall s \geq 0, \phi(s) \leq 2 n e^{2 M^{2} s^{2} / n} \phi\left(2 M^{2} s^{2} / n\right) . \tag{14}
\end{equation*}
$$

By Jensen's inequality, $\phi\left(2 M s^{2} / n\right) \leq \phi(s)^{2 M^{2} s / n}$ whenever $2 M^{2} s / n \leq 1$, hence (14) implies:

$$
\forall 0 \leq s \leq n / 2 M^{2}, \phi(s) \leq(2 n)^{\frac{1}{1-2 M^{2} s / n}} e^{\frac{2 M^{2} s^{2}}{n-2 M^{2} s}} .
$$

Since

$$
\forall s \geq 0, \mathbb{P}\left(\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\| \geq t\right) \leq e^{-s t} \phi(s),
$$

the Lemma then follows from the choice

$$
s \equiv \frac{t n}{8 M^{2}+4 M^{2} t}
$$

and a few simple calculations. [Notice that $2 M^{2} s / n \leq 1 / 2$ with this choice, hence $1 /(1-$ $\left.2 M^{2} s / n\right) \leq 2$.]

To prove (14), we begin with symmetrization (see e.g. [8]):

$$
\phi(s) \leq \mathbb{E}\left[\exp \left(2 s\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} Y_{i} Y_{i}^{*}\right\|\right)\right]
$$

where $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ is a Rademacher sequence independent of Y_{1}, \ldots, Y_{n}. Let \mathcal{S} be the (random) span of Y_{1}, \ldots, Y_{n} and $\operatorname{Tr}_{\mathcal{S}}$ denote the trace operation on linear operators mapping \mathcal{S} to itself. Following the argument in Theorem [1, we notice that:
$\mathbb{E}\left[\left.\exp \left(2 s\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} Y_{i} Y_{i}^{*}\right\|\right) \right\rvert\, Y_{1}, \ldots, Y_{n}\right] \leq 2 \mathbb{E}\left[\left.\operatorname{Tr}_{\mathcal{S}}\left\{\exp \left(\frac{2 s}{n} \sum_{i=1}^{n} \epsilon_{i} Y_{i} Y_{i}^{*}\right)\right\} \right\rvert\, Y_{1}, \ldots, Y_{n}\right]$.
Lemma 2 implies:

$$
\begin{aligned}
\mathbb{E}\left[\left.\exp \left(2 s\left\|\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} Y_{i} Y_{i}^{*}\right\|\right) \right\rvert\, Y_{1}, \ldots, Y_{n}\right] & \leq 2 \operatorname{Tr}_{\mathcal{S}}\left\{\exp \left(\frac{2 s^{2}}{n^{2}} \sum_{i=1}^{n}\left(Y_{i} Y_{i}^{*}\right)^{2}\right)\right\} \\
& \leq 2 n \exp \left(\left\|\frac{2 s^{2}}{n^{2}} \sum_{i=1}^{n}\left(Y_{i} Y_{i}^{*}\right)^{2}\right\|\right)
\end{aligned}
$$

using spectral mapping (4), the equality "trace $=$ sum of eigenvalues" and the fact that \mathcal{S} has dimension $\leq n$. A quick calculation shows that $0 \preceq\left(Y_{i} Y_{i}^{*}\right)^{2}=\left|Y_{i}\right|^{2} Y_{i} Y_{i}^{*} \preceq M^{2} Y_{i} Y_{i}^{*}$, hence (5) implies:

$$
0 \preceq \frac{2 s^{2}}{n^{2}} \sum_{i=1}^{n}\left(Y_{i} Y_{i}^{*}\right)^{2} \preceq \frac{2 M^{2} s^{2}}{n}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}\right) .
$$

Therefore:

$$
\left\|\frac{2 s^{2}}{n^{2}} \sum_{i=1}^{n}\left(Y_{i} Y_{i}^{*}\right)^{2}\right\| \leq \frac{2 M^{2} s^{2}}{n}\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}\right\| \leq \frac{2 M^{2} s^{2}}{n}\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\|+\frac{2 M^{2} s^{2}}{n}
$$

[We used $\left\|\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\| \leq 1$ in the last inequality.] Plugging this into the conditional expectation above and integrating, we obtain (14):
$\phi(s) \leq 2 n \mathbb{E}\left[\exp \left(\frac{2 M^{2} s^{2}}{n}\left\|\frac{1}{n} \sum_{i=1}^{n} Y_{i} Y_{i}^{*}-\mathbb{E}\left[Y_{1} Y_{1}^{*}\right]\right\|+\frac{2 M^{2} s^{2}}{n}\right)\right]=2 n e^{2 M^{2} s^{2} / n} \phi\left(2 M^{2} s^{2} / n\right)$.

5 Proof sketch for Golden-Thompson inequality

As promised in the Introduction, we sketch an elementary proof of inequality (3). We will need the Trotter-Lie formula, a simple consequence of the Taylor formula for e^{X} :

$$
\begin{equation*}
\forall A, B \in \mathbb{C}_{\text {Herm }}^{d \times d}, \lim _{n \rightarrow+\infty}\left(e^{A / n} e^{B / n}\right)^{n}=e^{A+B} \tag{15}
\end{equation*}
$$

The second ingredient is the inequality:

$$
\begin{equation*}
\forall k \in \mathbb{N}, \forall X, Y \in \mathbb{C}_{\text {Herm }}^{d \times d}: X, Y \succeq 0 \Rightarrow \operatorname{Tr}\left((X Y)^{2^{k+1}}\right) \leq \operatorname{Tr}\left(\left(X^{2} Y^{2}\right)^{2^{k}}\right) \tag{16}
\end{equation*}
$$

This is proven in of [5] via an argument using the existence of positive-semidefinite squareroots for positive-semidefinite matrices, and the Cauchy-Schwartz inequality for the standard inner product over $\mathbb{C}^{d \times d}$. Iterating (16) implies:

$$
\forall X, Y \in \mathbb{C}_{\text {Herm }}^{d \times d}: X, Y \succeq 0 \Rightarrow \operatorname{Tr}\left((X Y)^{2^{k}}\right) \leq \operatorname{Tr}\left(X^{2^{k}} Y^{2^{k}}\right)
$$

Apply this to $X=e^{A / 2^{k}}$ and $Y=e^{B / 2^{k}}$ with $A, B \in \mathbb{C}_{\text {Herm }}^{d \times d}$. Spectral mapping (4) implies $X, Y \succeq 0$ and we deduce:

$$
\operatorname{Tr}\left(\left(e^{A / 2^{k}} e^{B / 2^{k}}\right)^{2^{k}}\right) \leq \operatorname{Tr}\left(e^{A} e^{B}\right)
$$

Inequality (31) follows from letting $k \rightarrow+\infty$, using (15) and noticing that $\operatorname{Tr}(\cdot)$ is continuous.

References

[1] Radoslaw Adamczak, Alexander E. Litvak, Alain Pajor and Nicole TomczakJaegermann. "Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles". Journal of the American Mathematical Society, to appear (2009).
[2] Rudolf Ahlswede and Andreas Winter. "Strong converse for identification via quantum channels." IEEE Transactions on Information Theory 48(3): 569-579 (2002).
[3] Emmanuel Candès and Justin Romberg. "Sparsity and incoherence in compressive sampling." Inverse Problems 23:969985 (2007).
[4] Zoltan Füredi and János Komlós. "The eigenvalues of random symmetric matrices." Combinatorica 1(3), 233-241 (1981).
[5] Sidney Golden. "Lower Bounds for the Helmholtz Function." Physical Review 137, B1127B1128 (1965).
[6] Nathan Halko, Per-Gunnar Martinsson and Joel A. Tropp. "Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions." arXiv:0909.4061 (2009).
[7] Zeph Landau and Alexander Russell. "Random Cayley graphs are expanders: a simplified proof of the Alon-Roichman theorem." The Electronic Journal of Combinatorics, 11(1) (2004).
[8] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces. Springer (1991).
[9] Françoise Lust-Piquard and Gilles Pisier. "Non commutative Khintchine and Paley inequalities." Arkiv för Matematik, 29(2): 241-260 (1991).
[10] Shahar Mendelson and Alain Pajor. "On singular values of matrices with independent rows". Bernoulli 12(5): 761-773 (2006).
[11] Mark Rudelson. "Random vectors in the isotropic position." Journal of Functional Analysis, 164 (1): 60-72 (1999).
[12] Mark Rudelson and Roman Vershynin. "Sampling from large matrices: an approach through geometric functional analysis." Journal of the ACM 54(4):Article 21 (2007).
[13] Daniel Spielman and Nikhil Srivastava. "Graph sparsification by effective resistances." In Proceedings of the 40th annual ACM symposium on Theory of Computing (STOC 2008).
[14] C.J. Thompson. "Inequality with applications in statistical mechanics." Journal of Mathematical Physics, 6: 1812-1813 (1965).
[15] Joel A. Tropp. "On the conditioning of random subdictionaries." Applied and Computational Harmonic Analysis 25(1): 1-24 (2008).
[16] Roman Vershynin. "Frame expansions with erasures: an approach through the noncommutative operator theory." Applied and Computational Harmonic Analysis 18: 167-176 (2005).
[17] Roman Vershynin. "Spectral norm of products of random and deterministic matrices." Manuscript available from:
http://www-personal.umich.edu/~romanv/papers/papers.html.

[^0]: *IMPA, Rio de Janeiro, RJ, Brazil, 22430-040. rimfo@impa.br

