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Abstract

We give a new, elementary proof of a key inequality used by Rudelson in the

derivation of his well-known bound for random sums of rank-one operators. Our

approach is based on Ahlswede and Winter’s technique for proving operator Chernoff

bounds. We also prove a concentration inequality for sums of random matrices of

rank one with explicit constants.

1 Introduction

This note mainly deals with estimates for the operator norm ‖Zn‖ of random sums

Zn ≡
n
∑

i=1

ǫiAi (1)

of deterministic Hermitian matrices A1, . . . , An multiplied by random coefficients. Recall
that a Rademacher sequence is a sequence {ǫi}ni=1 of i.i.d. random variables with ǫ1 uniform
over {−1,+1}. A standard Gaussian sequence is a sequence i.i.d. standard Gaussian
random variables. Our main goal is to prove the following result.

Theorem 1 (proven in Section 3) Given positive integers d, n ∈ N, let A1, . . . , An be
deterministic d× d Hermitian matrices and {ǫi}ni=1 be either a Rademacher sequence or a
standard Gaussian sequence. Define Zn as in (1). Then for all p ∈ [1,+∞),

E [‖Zn‖p]1/p ≤ (
√

2 ln(2d) + Cp)

∥

∥

∥

∥

∥

n
∑

i=1

A2
i

∥

∥

∥

∥

∥

1/2
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where

Cp ≡
(

p

∫ +∞

0

tp−1e−
t2

2 dt

)1/p

(≤ c
√
p for some universal c > 0).

For d = 1, this result corresponds to the classical Khintchine inequalities, which give
sub-Guassian bounds for the moments of

∑n
i=1 ǫiai (a1, . . . , an ∈ R). Theorem 1 is implicit

in Section 3 of Rudelson’s paper [11], albeit with non-explicit constants. The main Theorem
in that paper is the following inequality, which is a simple corollary of Theorem 1: if
Y1, . . . , Yn are i.i.d. random (column) vectors in Cd which are isotropic (i.e E [Y1Y

∗
1 ] = I,

the d× d identity matrix), then:

E

[∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − I

∥

∥

∥

∥

∥

]

≤ C E
[

|Y1|logn
]1/ logn

√

log d

n
(2)

for some universal C > 0, whenever the RHS of the above inequality is at most 1. This
important result has been applied to several different problems, such as bringing a convex
body to near-isotropic position [11]; the analysis of for low-rank approximations of matrices
[12, 6] and graph sparsification [13]; estimating of singular values of matrices with inde-
pendent rows [10]; analysing compressive sensing [3]; and related problems in Harmonic
Analysis [16, 15].

The key ingredient of the original proof of Theorem 1 is a non-commutative Khintchine
inequality by Lust-Picard and Pisier [9]. This states that there exists a universal c > 0
such that for all Zn as in the Theorem, all p ≥ 1 and all d × d matrices {Bi, Di}ni=1 with
Bi +Di = Ai, 1 ≤ i ≤ n,

E [‖Zn‖pSp]
1/p ≤ c

√
p





∥

∥

∥

∥

∥

n
∑

i=1

BiB
∗
i

∥

∥

∥

∥

∥

1/2

Sp

+

∥

∥

∥

∥

∥

n
∑

i=1

D∗
iDi

∥

∥

∥

∥

∥

1/2

Sp



 ,

where ‖ · ‖Sp denotes the p-th Schatten norm: ‖A‖pSp ≡ Tr[(A∗A)p/2]. Unfortunately, the
proof of the Lust-Picard/Pisier inequality employs language and tools from non-commutative
probability that are rather foreign to most potential users of (2).

This note presents an elementary proof of Theorem 1 that bypasses the above inequal-
ity. Our argument is based on an improvement of the methodology created by Ahlswede
and Winter [2] in order to prove their operator Chernoff bound, which also has many appli-
cations e.g. [7] (the improvement is discussed in Section 3.1). This approach only requires
elementary facts from Linear Algebra and Matrix Analysis. The most complicated result
that we use is the Golden-Thompspon inequality [5, 14]:

∀d ∈ N, ∀ d× d Hermitian matrices A,B, Tr(eA+B) ≤ Tr(eAeB). (3)

2



The elementary proof of this classical inequality is sketched in Section 5 below.
We have already noted that Rudelson’s bound (2) follows simply from Theorem 1; see

[11, Section 3] for detais. Here we prove a concentration lemma corresponding to that
result under the stronger assumption that |Y1| is a.s. bounded. While similar results have
appeared in other papers [10, 12, 16], our proof is simpler and gives explicit (albeit quite
large) constants.

Lemma 1 (Proven in Section 4) Let Y1, . . . , Yn be i.i.d. random column vectors in Cd

with |Y1| ≤ M almost surely and ‖E [Y1Y
∗
1 ] ‖ ≤ 1. Then:

∀t ≥ 0,P

(∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − E [Y1Y

∗
1 ]

∥

∥

∥

∥

∥

≥ t

)

≤ (2n)2e
− nt2

16M2+8M2t .

In particular, a calculation shows that:

∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − E [Y1Y

∗
1 ]

∥

∥

∥

∥

∥

< ǫ(n,M) ≡ M

√

72 lnn+ 48 ln 2

n
with probability ≥ 1− 1

n

whenever ǫ(n,M) ≤ 1. A key feature both of this Lemma is that the ambient dimension d
plays no direct role in the bound. In fact, the same result holds for Yi taking values in a
separable Hilbert space (as in the last section of [10]).

To conclude the introduction, we present an open problem: is it possible to improve
upon Rudelson’s bound under further assumptions? There is some evidence that the depen-
dence on ln(d) in the Theorem, while necessary in general [12, Remark 3.4], can sometimes
be removed. For instance, Adamczak et al. [1] have improved upon Rudelson’s original
application of Theorem 1 to convex bodies, obtaining exactly what one would expect in

the absence of the
√

log(2d) term. Another setting where our bound is a Θ
(√

ln d
)

factor

away from optimality is that of more classical random matrices (cf. the end of Section 3.1
below). It would be interesting if one could sharpen the proof of Theorem 1 in order to
reobtain these results. [Related issues are raised by Vershynin [17].]

2 Preliminaries

We let Cd×d
Herm denote the set of d× d Hermitian matrices, which is a subset of the set Cd×d

of all d× d matrices with complex entries. The spectral theorem states that all A ∈ C
d×d
Herm

have d real eigenvalues (possibly with repetitions) that correspond to an orthonormal set
of eigenvectors. λmax(A) is the largest eigenvalue of A. The spectrum of A, denoted by
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spec(A), is the multiset of all eigenvalues, where each eigenvalue appears a number of times
equal to its multiplicity. We let

‖C‖ ≡ max
v∈Cd |v|=1

|Cv|

denote the operator norm of C ∈ Cd×d (|·| is the Euclidean norm). By the spectral theorem,

∀A ∈ C
d×d
Herm, ‖A‖ = max{λmax(A), λmax(−A)}.

Moreover, Tr(A) (the trace of A) is the sum of the eigenvalues of A.

2.1 Spectral mapping

Let f : C → C be an entire analytic function with a power-series representation f(z) ≡
∑

n≥0 cn z
n (z ∈ C). If all cn are real, the expression:

f(A) ≡
∑

n≥0

cnA
n (A ∈ C

d×d
Herm)

corresponds to a map from C
d×d
Herm to itself. We will sometimes use the so-called spectral

mapping property:
specf(A) = f(spec(A)). (4)

By this we mean that the eigenvalues of f(A) are the numbers f(λ) with λ ∈ spec(A).
Moreover, the multiplicity of ξ ∈ specf(A) is the sum of the multiplicities of all preimages
of ξ under f that lie in spec(A).

2.2 The positive-semidefinite order

We will use the notation A � 0 to say that A is positive-semidefinite, i.e. A ∈ C
d×d
Herm and

its eigenvalues are A are non-negative. This is equivalent to saying that (v, Av) ≥ 0 for all
v ∈ Cd, where (·, ··) is the standard Euclidean inner product.

If A,B ∈ C
d×d
Herm, we write A � B or B � A to say that A− B � 0. Notice that “�” is

a partial order and that:

∀A,B,A′, B′ ∈ C
d×d
Herm, (A � A′) ∧ (B � B′) ⇒ A + A′ � B +B′. (5)

Moreover, spectral mapping (4) implies that:

∀A ∈ C
d×d
Herm, A

2 � 0. (6)

We will also need the following simple fact.
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Proposition 1 For all A,B,C ∈ C
d×d
Herm :

(C � 0) ∧ (A � B) ⇒ Tr(AC) ≤ Tr(BC). (7)

Proof: To prove this, assume the LHS and observe that the RHS is equivalent to Tr(C∆) ≥
0 where ∆ ≡ B − A. By assumption, ∆ � 0, hence it has a Hermitian square root ∆1/2.
The cyclic property of the trace implies:

Tr(C∆) = Tr(∆1/2C∆1/2).

Since the trace is the sum of the eigenvalues, we will be done once we show that ∆1/2C∆1/2 �
0. But, since ∆1/2 is Hermitian and C � 0,

∀v ∈ C
d, (v,∆1/2C∆1/2v) = ((∆1/2v), C(∆1/2v)) = (w,Cw) ≥ 0 (with w = ∆1/2v),

which shows that ∆1/2C∆1/2 � 0, as desired. 2

2.3 Probability with matrices

Assume (Ω,F ,P) is a probability space and Z : Ω → C
d×d
Herm is measurable with respect

to F and the Borel σ-field on C
d×d
Herm (this is equivalent to requiring that all entries of Z

be complex-valued random variables). C
d×d
Herm is a metrically complete vector space and

one can naturally define an expected value E [Z] ∈ C
d×d
Herm. This turns out to be the matrix

E [Z] ∈ C
d×d
Herm whose (i, j)-entry is the expected value of the (i, j)-th entry of Z. [Of course,

E [Z] is only defined if all entries of Z are integrable, but this will always be the case in
this paper.]

The definition of expectations implies that traces and expectations commute:

Tr(E [Z]) = E [Tr(Z)] . (8)

Moreover, one can check that the usual product rule is satisfied:

If Z,W : Ω → C
d×d
Herm are measurable and independent, E [ZW ] = E [Z]E [W ] . (9)

3 Proof of Theorem 1

Proof: [of Theorem 1] We wish to control the tail behavior of:

‖Zn‖ = max{λmax(Zn), λmax(−Zn)}.

5



However, Zn and −Zn have the same distribution. It follows that:

∀t ≥ 0, P (‖Zn‖ ≥ t) ≤ 2P (λmax(Zn) ≥ t) .

The usual Bernstein trick implies that for all t ≥ 0,

∀t ≥ 0, P (λmax(Zn) ≥ t) ≤ inf
s>0

e−st
E
[

esλmax(Zn)
]

.

The function “x 7→ esx” is monotone non-decreasing and positive for all s ≥ 0. It follows
from the spectral mapping property (4) that for all s ≥ 0, the largest eigenvalue of esZn is
esλmax(Zn) and all eigenvalues of esZn are non-negative. Using the equality “trace = sum of
eigenvalues” implies that for all s ≥ 0,

E
[

esλmax(Zn)
]

= E
[

λmax

(

esZn
)]

≤ E
[

Tr
(

esZn
)]

.

As a result, we have the inequality:

∀t ≥ 0, P (‖Zn‖ ≥ t) ≤ 2 inf
s≥0

e−st
E
[

Tr
(

esZn
)]

. (10)

Up to now, our proof has followed Ahlswede and Winter’s argument. The next lemma,
however, will require new ideas.

Lemma 2 For all s ∈ R,

E
[

Tr(esZn)
]

≤ Tr

(

e
s2

∑n
i=1 A2

i
2

)

.

This lemma is proven below. We will now show how it implies Rudelson’s bound. Let

σ2 ≡
∥

∥

∥

∥

∥

n
∑

i=1

A2
i

∥

∥

∥

∥

∥

= λmax

(

n
∑

i=1

A2
i

)

.

[The second inequality follows from
∑n

i=1A
2
i � 0, which holds because of (5) and (6).] We

note that:

Tr

(

e
s2

∑n
i=1 A2

i
2

)

≤ d λmax

(

e
s2

∑n
i=1 A2

i
2

)

= d e
s2σ2

2

where the equality is yet another application of spectral mapping (4) and the fact that
“x 7→ es

2x/2” is monotone increasing. We deduce from the Lemma and (10) that:

∀t ≥ 0, P (‖Zn‖ ≥ t) ≤ 2d inf
s≥0

e−st+ s2t2

2 = 2d e−
t2

2σ2 . (11)

6



This implies that for any p ≥ 1,

1

σp
E

[

(‖Zn‖ −
√

2 ln(2d)σ)p+

]

= p

∫ +∞

0

tp−1
P

(

‖Zn‖ ≥ (
√

2 ln(2d) + t)σ
)

dt

(use(11)) ≤ 2pd

∫ +∞

0

tp−1e−
(t+

√
2 ln(2d))2

2 dt

≤ 2pd

∫ +∞

0

tp−1e−
t2+2 ln(2d)

2 dt = Cp
p

Since 0 ≤ ‖Zn‖ ≤
√

2 ln(2d)σ + (‖Zn‖ −
√

2 ln(2d)σ)+, this implies the Lp estimate in the
Theorem. The bound “Cp ≤ c

√
p” is standard and we omit its proof. 2

To finish, we now prove Lemma 2.
Proof: [of Lemma 2] Define D0 ≡

∑n
i=1 s

2A2
i /2 and

Dj ≡ D0 +

j
∑

i=1

(

sǫiAi −
s2A2

i

2

)

(1 ≤ j ≤ n).

We will prove that for all 1 ≤ j ≤ n:

E [Tr (exp (Dj))] ≤ E [Tr (exp (Dj−1))] . (12)

Notice that this implies E
[

Tr(eDn)
]

≤ E
[

Tr(eD0)
]

, which is the precisely the Lemma. To
prove (12), fix 1 ≤ j ≤ n. Notice that Dj−1 is independent from sǫjAj − s2A2

j/2 since the
{ǫi}ni=1 are independent. This implies that:

E [Tr (exp (Dj))] = E

[

Tr

(

exp

(

Dj−1 + sǫjAj −
s2A2

j

2

))]

(use Golden-Thompson (3)) ≤ E

[

Tr

(

exp (Dj−1) exp

(

sǫjAj −
s2A2

j

2

))]

(Tr(·) and E [·] commute, (8)) = Tr

(

E

[

exp (Dj−1) exp

(

sǫjAj −
s2A2

j

2

)])

.

(use product rule, (9)) = Tr

(

E [exp (Dj−1)]E

[

exp

(

sǫjAj −
s2A2

j

2

)])

.

By the monotonicity of the trace (7) and the fact that exp (Dj−1) � 0 (which follows
from (4)), we will be done once we show that:

E

[

exp

(

sǫjAj −
s2A2

j

2

)]

� I. (13)

7



The key fact is that sǫjAj and −s2A2
j/2 always commute, hence the exponential of the sum

is the product of the exponentials. Applying (9) and noting that e−s2A2
j/2 is constant, we

see that:

E

[

exp

(

sǫjAj −
s2A2

j

2

)]

= E [exp (sǫjAj)] e
−

s2A2
j

2 .

In the Gaussian case, an explicit calculation shows that E [exp (sǫjAj)] = es
2A2

j/2, hence
(13) holds. In the Rademacher case, we have:

E [exp (sǫjAj)] e
−

s2A2
j

2 = f(Aj)

where f(z) = cosh(sz)e−s2z2/2. It is a classical fact that 0 ≤ cosh(x) ≤ ex
2/2 for all x ∈ R

(just compare the Taylor expansions); this implies that 0 ≤ f(λ) ≤ 1 for all eigenvalues of
Aj. Using spectral mapping (4), we see that:

specf(Aj) = f(spec(Aj)) ⊂ [0, 1],

which implies that f(Aj) � I. This proves (13) in this case and finishes the proof of (12)
and of the Lemma. 2

3.1 Remarks on the original AW approach

A direct adaptation of the original argument of Ahlswede and Winter [2] would lead to an
inequality of the form:

E
[

Tr(esZn)
]

≤ Tr
(

E
[

esǫnAn
]

E
[

esZn−1
])

.

One sees that:

E
[

esǫnAn
]

� e
s2A2

n
2 � e

s2‖A2
n‖

2 I.

However, only the second inequality seems to be useful, as there is no obvious relationship
between

Tr

(

e
s2A2

n
2 E

[

esZn−1
]

)

and

Tr

(

E
[

esǫn−1An−1
]

E

[

esZn−2+
s2A2

n
2

])

,

8



which is what we would need to proceed with induction. [Note that Golden-Thompson (3)
cannot be undone and fails for three summands, [14].] The best one can do with the second
inequality is:

E
[

Tr(esZn)
]

≤ d e
s2

∑n
i=1 ‖Ai‖

2

2 .

This would give a version of Theorem 1 with
∑n

i=1 ‖Ai‖2 replacing ‖
∑n

i=1A
2
i ‖. This mod-

ified result is always worse than the actual Theorem, and can be dramatically so. For
instance, consider the case of a Wigner matrix where:

Zn ≡
∑

1≤i≤j≤m

ǫijAij

with the ǫij i.i.d. standard Gaussian and each Aij has ones at positions (i, j) and (j, i) and
zeros elsewhere (we take d = m and n =

(

m
2

)

in this case). Direct calculation reveals:
∥

∥

∥

∥

∥

∑

ij

A2
ij

∥

∥

∥

∥

∥

= ‖(m− 1)I‖ = m− 1 ≪
(

m

2

)

=
∑

ij

‖Aij‖2.

We note in passing that neither approach is sharp in this case, as ‖
∑

ij ǫijAij‖ concen-

trates around 2
√
m [4].

4 Concentration for rank-one operators

In this section we prove Lemma 1.
Proof: [of Lemma 1] Let

φ(s) ≡ E

[

exp

(

s

∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − E [Y1Y

∗
1 ]

∥

∥

∥

∥

∥

)]

.

We will show below that:

∀s ≥ 0, φ(s) ≤ 2n e2M
2s2/nφ(2M2s2/n). (14)

By Jensen’s inequality, φ(2Ms2/n) ≤ φ(s)2M
2s/n whenever 2M2s/n ≤ 1, hence (14) implies:

∀0 ≤ s ≤ n/2M2, φ(s) ≤ (2n)
1

1−2M2s/n e
2M2s2

n−2M2s .

Since

∀s ≥ 0, P

(∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − E [Y1Y

∗
1 ]

∥

∥

∥

∥

∥

≥ t

)

≤ e−stφ(s),

9



the Lemma then follows from the choice

s ≡ tn

8M2 + 4M2t

and a few simple calculations. [Notice that 2M2s/n ≤ 1/2 with this choice, hence 1/(1−
2M2s/n) ≤ 2.]

To prove (14), we begin with symmetrization (see e.g. [8]):

φ(s) ≤ E

[

exp

(

2s

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ǫiYiY
∗
i

∥

∥

∥

∥

∥

)]

,

where {ǫi}ni=1 is a Rademacher sequence independent of Y1, . . . , Yn. Let S be the (random)
span of Y1, . . . , Yn and TrS denote the trace operation on linear operators mapping S to
itself. Following the argument in Theorem 1, we notice that:

E

[

exp

(

2s

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ǫiYiY
∗
i

∥

∥

∥

∥

∥

)

| Y1, . . . , Yn

]

≤ 2E

[

TrS

{

exp

(

2s

n

n
∑

i=1

ǫiYiY
∗
i

)}

| Y1, . . . , Yn

]

.

Lemma 2 implies:

E

[

exp

(

2s

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ǫiYiY
∗
i

∥

∥

∥

∥

∥

)

| Y1, . . . , Yn

]

≤ 2TrS

{

exp

(

2s2

n2

n
∑

i=1

(YiY
∗
i )

2

)}

≤ 2n exp

(∥

∥

∥

∥

∥

2s2

n2

n
∑

i=1

(YiY
∗
i )

2

∥

∥

∥

∥

∥

)

,

using spectral mapping (4), the equality “trace = sum of eigenvalues” and the fact that S
has dimension ≤ n. A quick calculation shows that 0 � (YiY

∗
i )

2 = |Yi|2 YiY
∗
i � M2YiY

∗
i ,

hence (5) implies:

0 � 2s2

n2

n
∑

i=1

(YiY
∗
i )

2 � 2M2s2

n

(

1

n

n
∑

i=1

YiY
∗
i

)

.

Therefore:
∥

∥

∥

∥

∥

2s2

n2

n
∑

i=1

(YiY
∗
i )

2

∥

∥

∥

∥

∥

≤ 2M2s2

n

∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i

∥

∥

∥

∥

∥

≤ 2M2s2

n

∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − E [Y1Y

∗
1 ]

∥

∥

∥

∥

∥

+
2M2s2

n
.

[We used ‖E [Y1Y
∗
1 ] ‖ ≤ 1 in the last inequality.] Plugging this into the conditional expec-

tation above and integrating, we obtain (14):

φ(s) ≤ 2nE

[

exp

(

2M2s2

n

∥

∥

∥

∥

∥

1

n

n
∑

i=1

YiY
∗
i − E [Y1Y

∗
1 ]

∥

∥

∥

∥

∥

+
2M2s2

n

)]

= 2ne2M
2s2/n φ(2M2s2/n).

2
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5 Proof sketch for Golden-Thompson inequality

As promised in the Introduction, we sketch an elementary proof of inequality (3). We will
need the Trotter-Lie formula, a simple consequence of the Taylor formula for eX :

∀A,B ∈ C
d×d
Herm, lim

n→+∞
(eA/neB/n)n = eA+B. (15)

The second ingredient is the inequality:

∀k ∈ N, ∀X, Y ∈ C
d×d
Herm : X, Y � 0 ⇒ Tr((XY )2

k+1

) ≤ Tr((X2Y 2)2
k

). (16)

This is proven in of [5] via an argument using the existence of positive-semidefinite square-
roots for positive-semidefinite matrices, and the Cauchy-Schwartz inequality for the stan-
dard inner product over Cd×d. Iterating (16) implies:

∀X, Y ∈ C
d×d
Herm : X, Y � 0 ⇒ Tr((XY )2

k

) ≤ Tr(X2kY 2k).

Apply this to X = eA/2k and Y = eB/2k with A,B ∈ C
d×d
Herm. Spectral mapping (4) implies

X, Y � 0 and we deduce:
Tr((eA/2keB/2k)2

k

) ≤ Tr(eAeB).

Inequality (3) follows from letting k → +∞, using (15) and noticing that Tr(·) is continuous.
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